Autores: Abedi Roya, Eslam Bonyad Amir
In this study, we explored the utility of k Nearest Neighbor (kNN) algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type) estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.
Palabras clave: Forest attributes IRS k Nearest Neighbor (kNN).
2018-10-23 | 128 visitas | Evalua este artículo 0 valoraciones
Vol. 7 Núm.1. Enero 2015 Pags. 93-102 Ecologia Balkanica 2015; 7(1)